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Abstract

This paper addresses the question of how to estimate the standard errors in panel
data when unobserved cluster effects are potentially present. We analyze the perfor-
mance of statistical inference regarding the parameters of a panel data model when it is
first subjected to a pretest for the presence of individual and/or time unobserved clus-
ter effects. Using Monte Carlo simulations we compare the performance of six proposed
diagnostics that make use of statistical tests available in the literature such as Lagrange
multiplier, Likelihood ratios, and F tests. We find that these six pretest estimators
are a viable alternative to estimate panel data models with unobserved cluster effects,
in the sense that they achieve empirical sizes very close to the ones obtained using an
estimator of the variance as if we knew the true data generating process. These results
are robust, at least in the context of our simulations, to the presence of temporary
clusters effects, and non-normality of the disturbance, as well as non-normality of the
regressor. We provide several empirical examples to illustrate the importance of our
findings.
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1 Introduction

Moulton (1990) shows the consequences of ignoring cluster structures or cluster hetero-

geneities: inefficient parameter estimates, incorrect standard errors, and erroneous statistical

inference.

Petersen (2009), considering typical finance panel data sets of firms over time, provide

intuition as to why the different approaches to compute standard errors sometimes give

different answers, and gives researchers guidance for their use. He provides a description

of the different approaches used in papers in finance published in top journals between

2001-2004. These methods include Fama-MacBeth, which was developed to account for

the correlation between observations on different firms in the same year, not to account

for the correlation between observations on the same firm in different years. Newey and

West (1987)’s estimator, designed to account for a serial correlation of unknown form in

the residuals within cluster. White (1980)’ standard errors robust to heteroskedasticity.

Standard errors clustered either for firm, year (see Arellano (1987); Liang and Zeger (1986);

Rogers (1993); White (1984)) or both following the method proposed by Thompson (2011),

which is unbiased as long as there are enough number of firms and years.

Adjusting the standard errors either for firm or time is not valid when the disturbances

are correlated across both firms and time. On the other hand, Thompson (2011) shows

that when sample sizes are small, the more robust standard errors lead us to find statistical

significance even when it does not exist. He argues that double-clustering is likely to be

most helpful in data sets with the following characteristics: the regression errors include

significant time and firm components, the regressors themselves include significant firm and

time components, and the number of firms and time is not too different. In cases where N

or T is small, double-clustering may cause more harm than good because the variance of

the estimated standard error increases, and we reject the null hypothesis using a t-test more

often.

In this paper we analyze the performance of statistical inference regarding the parameters
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of a panel data model when this is first subjected to a diagnostic for the presence of individual

and/or time unobserved cluster effects. Using simulations we compare the performance of

six different proposed pretests that are based on combinations of simple Lagrange multiplier,

Likelihood ratio, and F tests for each or both unobserved cluster effects. Our results sug-

gest that pre-testing for the presence of unobserved cluster effects is a viable alternative to

estimate panel data models when the true model is unknown, in the sense that they achieve

empirical sizes very close to the ones obtained using an estimator of the variance as if we

knew the true data generating process. We do not find significant differences between the

alternatives, which suggests that researchers could pick the simplest diagnostic in terms of

computation. As robustness check, we find that these results hold when the cluster effects

are temporary instead of fixed, when the disturbance is non-normally distributed, and when

the regressor is non-normally distributed.

This paper adds to the literature of pretesting in econometrics. Previous studies that

have evaluated pretest estimators in the context of panel data include Ziemer and Wetzstein

(1983) on the pooling problem, Baltagi and Li (1997) on the estimation of error component

models with autocorrelated disturbances, Baltagi, Bresson, and Pirotte (2003b) on a pos-

sibly misspecified two-way error component model and Guggenberger (2010) together with

Kabaila, Mainzer, and Farchione (2015) on the Hausman test used as a pretest of the random

effects specification. In this literature, the paper that it is most closely related to ours is

Baltagi, Bresson, and Pirotte (2003a), which evaluates a pretest estimator in terms of MSE

performance with a focus on model misspecification.

In addition, it adds to the recent literature about how and when to cluster standard errors

in economics. Examples of recent surveys are Cameron and Miller (2015) and Mackinnon

(2018). Bertrand, Duflo, and Mullainathan (2004) show how inference with difference in

difference estimators is affected by serial correlation of the outcomes influencing importantly

the practice of statistical inference in this context. More recently, Abadie, Athey, Imbens,

and Wooldridge (2017) argue that clustering is a sampling design issue (e.g. the sample
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follows a two-stage sampling process where we randomly draw a subset of clusters from

a population of clusters and then we randomly select units from those previously selected

clusters) or an experimental design issue (e.g. treatment assignment is correlated within

clusters). In contrast, Mackinnon and Webb (2019) argue that the previous conclusions

depend critically on the assumption that the sample is large relative to a finite population

in which the researcher is interested. However, under a meta-population framework, i.e. a

view where researchers are interested not in the actual population but in a meta-population

from which they imagine the former was drawn, the finite-population arguments of Abadie

et al. (2017) do not apply and cluster-robust inference can be done in the usual way. Our

paper fits within the meta-population setting, in the sense that we assume that the potential

clusters were drawn from a meta-population of clusters.

We also add to the finance literature by taking one step further in the analysis of Petersen

(2009) by suggesting a pretest estimator to compute the standard errors and showing that it

is feasible to do inference without distorting the size. This paper also relates to Thompson

(2011), who provided a formula to compute two-way clustered standard errors in finance

panel data sets.

This paper is organized as follows. Section 2 describes the approaches to estimate the

standard errors in finance panel data sets. Section 3 describes the pretest estimator, the

hypothesis to be tested, and a brief description of the diagnostic tests considered. Section 4

describes the Monte Carlo set up and reports the simulation results. Section 5 provides an

empirical example to show the relevance of our results. Some final remarks are then provided

in Section 6.

2 Estimating the Variance

Consider the standard regression for a balanced panel data set:

yit = Xitβ + εit i = 1, ..., N t = 1, ..., T (1)
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where there are observations on entities i across years t. Stacking the yit, Xit and εit over

the NT observations then yields the model:

y = Xβ + ε (2)

The NT ×K matrix X and the NT -dimensional vector ε are assumed to be independent of

each other, and to have a zero mean and finite variance.

The OLS estimator for the K -dimensional vector β is:

β̂ = (X ′X)−1X ′y = β + (X ′X)−1X ′ε (3)

In general, the variance matrix conditional on X is:

V [β̂] = (X ′X)−1B(X ′X)−1 (4)

with

B = X ′V [ε|X]X (5)

Under the assumption of homoskedasticity and zero correlation of any kind (over time or

across entities) in the disturbances (V [ε|X] = σ2INT ) we have:

B = σ2X ′X (6)

and the variance can be estimated using:

V̂ [β̂] =
e′e

NT −K
(X ′X)−1 (7)

where e = y −Xβ̂. This is the standard OLS formula that is correct when the disturbances

are independent and identically distributed (Greene (2012)).
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Relaxing the homoskedasticity assumption, allowing instead V [ε|X] = σ2Ω where Ω is a

diagonal NT ×NT matrix, we have that B becomes:

B = σ2X ′ΩX (8)

which can be estimated using the White heteroskedasticity consistent estimator:

V̂HC [β̂] =
1

NT
(

1

NT
X ′X)−1(

1

NT

N∑
i=1

T∑
t=1

e2itXitX
′
it)(

1

NT
X ′X)−1 (9)

2.1 Cluster robust variance estimator (One-Way clustering)

By relaxing the assumption of independent disturbances, we can first assume that the data

have an unobserved cluster effect by entity that is fixed. We can stack all observations in

the ith cluster and Model 1 can be written as:

yi = Xiβ + εi i = 1, ..., N (10)

where yi and εi are Ni× 1 vectors, Xi is an Ni×K matrix, and there are Ni observations in

cluster i. Further stacking yi, Xi and εi over the N clusters then yields the model:

y = Xβ + ε (11)

The OLS estimator now is:

β̂ = (X ′X)−1X ′y = (
N∑
i=1

X ′iXi)
−1

N∑
i=1

X ′iyi (12)

The variance matrix conditional on X is:

V [β̂] = (X ′X)−1B(X ′X)−1 (13)
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with

B = X ′V [ε|X]X (14)

Given the error independence across clusters, V [ε|X] has a block-diagonal structure, and

this equation simplifies to:

BCR =
N∑
i=1

X ′iE[εiε
′
i|Xi]Xi (15)

The cluster-robust estimator of the variance matrix (CRVE) of the OLS estimator is the

sandwich estimator:

V̂CRi
[β̂] = (X ′X)−1B̂CRi

(X ′X)−1 (16)

where

B̂CRi
=

N∑
i=1

X ′ieie
′
iXi (17)

where Xi and ei are T stacked observations of Xit and eit in the ith cluster. This accounts

for arbitrary forms of serial correlation for each entity over time.1

Similarly, if we assume that the data have an unobserved cluster effect by time, the cluster-

robust variance estimator becomes:

V̂CRt [β̂] = (X ′X)−1(
T∑
t=1

X ′tete
′
tXt)(X

′X)−1 (18)

where Xt and et are N stacked observations of Xit and eit in the tth cluster. This accounts

for arbitrary forms of correlation among the entities at any given point in time.

Finite sample modifications of Equation (16) and (18) are typically used to reduce

downward bias of the estimator due to a finite numbers of clusters (Cameron and Miller

(2015)). In this paper, we use the finite-sample adjustment G
G−1

NT−1
NT−K , where we substitute

G by N or T respectively in the case of clustered by entity or clustered by time.

Inference can be done on the basis of critical values drawn from a standard normal

or alternatively a t distribution with G-1 degrees of freedom as first suggested by Bester,

1This formula is attributed to White (1984), Liang and Zeger (1986), and Arellano (1987).
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Conley, and Hansen (2011), which is the approach we follow.

In addition, we could use the Fama-MacBeth approach (see Fama and Macbeth (1973))

for the case of arbitrary correlation across entities and the Newey-West approach for the case

of autocorrelation over time. Both methods are also used in Finance literature as reported

in Petersen (2009). However, we choose to focus on the already described approaches to save

space and because they are the methods more heavily used in the recent literature.

2.2 Cluster robust variance estimator (Two-Way clustering)

Cameron, Gelbach, and Miller (2011) and Thompson (2011) provide a variance estimator

that enables cluster-robust inference when there is two-way or multi-way clustering that is

non nested:

V̂CRit
[β̂] = V̂CRi

[β̂] + V̂CRt [β̂]− V̂CRi∩t
[β̂] (19)

where each variance component is adjusted with the finite-sample factor previously men-

tioned.2

In this case, inference could be based on the OLS slope coefficient with critical values

based on a standard normal distribution as in Petersen (2009) or alternatively we can use

t0.025;min(N,T )−1 critical value. We follow the latter approach.

3 Pretest of Unobserved Cluster Effects

3.1 Pretest estimator of the variance

Suppose we have the following model:

yit = x′itβ + εit i = 1, ..., N t = 1, ..., T (20)

2Alternatively, we can substitute G by Min(N,T ) and use the same factor in the three components
(Cameron et al., 2011).
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where

εit = γi + δt + ηit (21)

and

xit = µi + ζt + νit (22)

where the components γi, δt, µi and ζt are mean zero random variables with variances σ2
γ,

σ2
δ , σ

2
µ and σ2

ζ , respectively.

A pretest estimator for the variance of β is given by:

V̂pt[β̂] = DI V̂HC [β̂] +DII V̂CRi
[β̂] +DIII V̂CRt [β̂] +DIV V̂CRit

[β̂] (23)

where V̂HC , V̂CRi
, V̂CRt , and V̂CRit

corresponds to the variance estimators defined in the

previous section; and Di is an indicator variable equal to 1 when the outcome of a particular

diagnostic favors the estimation of the variance according to case i, with the cases defined

as Case I: σ2
γ = 0 and σ2

δ = 0; Case II: σ2
γ = 0 and σ2

δ > 0; Case III: σ2
γ > 0 and σ2

δ = 0; and

Case IV: σ2
γ > 0 and σ2

δ > 0.

3.2 Pretesting for the presence of the unobserved cluster effects

To decide between the four cases, we evaluate six pretest alternatives, which can be repre-

sented with a decision tree as it is done in Figures 1, 2, and 3. They consist of a sequential

set of statistical tests, in which each test focuses on a particular component with different

assumptions regarding the remaining component. At each node of the pretest we evaluate

the existence of a particular cluster effect or both, denote H
γ=0|δ≥0
0 as a shorthand nota-

tion of the null hypothesis H0 : σ2
γ = 0 (allowing σ2

δ ≥ 0); H
γ=0|δ=0
0 for the null hypothesis

H0 : σ2
γ = 0 (assuming σ2

δ = 0); H
δ=0|γ≥0
0 for the null hypothesis H0 : σ2

δ = 0 (allowing

σ2
γ ≥ 0); H

δ=0|γ=0
0 for the null hypothesis H0 : σ2

δ = 0 (assuming σ2
γ = 0); and Hδ=0&γ=0

0 for

the null hypothesis H0 : σ2
δ = 0 and σ2

γ = 0. In the next subsection we describe the tests
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applied for each node, which corresponds to particular forms of the Lagrange multiplier,

Likelihood ratio, and F tests.

These six pretests can be classified into three groups In the first two alternatives (Fig-

ure 1), we start testing one component assuming the absence of the remaining component

and then continue testing one by one assuming the outcome of the test in the previous node.

In the second group (Figure 2) we start assuming the existence of both errors components

and then continue testing one by one assuming the outcome according to the test done in the

previous node. Finally, in the third group (Figure 3 option e) starts assuming the existence

of the error components but it does not impose the outcome of the previous node into the

next one, which makes the initial cluster being tested irrelevant (i.e. whether you first test

firm cluster effects or time cluster effects). In the case of option f, we start with a test with

the null hypothesis of both effects being non-existent as done in Baltagi et al. (2003a).

To test the null hypothesis that corresponds to each node in the diagrams, we use a set

of tests available in the literature that we describe in the next subsections. They are part of

three different types of tests: the Lagrange multiplier, Likelihood ratio, and F tests.

3.2.1 Lagrange multiplier tests

For the null hypotheses H
γ=0|δ=0
0 and H

δ=0|γ=0
0 we use a Standarized Lagrange Multiplier

test given by:

SLM =
(d− E[d])√
V ar(d)

(24)

where d =
∑G

g=1(
∑Ng

i=1 ûgi)
2/

∑G
g=1

∑Ng

i=1 û
2
gi, E[d] = tr(D′MD)/n, D = diag(ιg), ιg is a col-

umn of ones of length Ng, M = I−W (W ′W )−1W ′, W = (XZ) with X and Z matrices that

stack all observations, n = N−Kx−Kz, V ar(d) = 2{ntr(D′MD)2−[tr(D′MD)]2}/n2(n+2),

and G the number of clusters of the component being tested. Under the null hypothesis, the

limiting distribution of SLM is standard normal. This test is based on the work of Honda
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Notes:
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γ = 0 and σ2
δ = 0

Case II is σ2
γ = 0 and σ2

δ > 0
Case III is σ2

γ > 0 and σ2
δ = 0

Case IV is σ2
γ > 0 and σ2

δ > 0

H
γ=0|δ≥0
0 is a test for the null H0 : σ2

γ = 0 (allowing σ2
δ ≥ 0)

H
γ=0|δ=0
0 is a test for the null H0 : σ2

γ = 0 (assuming σ2
δ = 0)

H
δ=0|γ≥0
0 is a test for the null H0 : σ2

δ = 0 (allowing σ2
γ ≥ 0)

H
δ=0|γ=0
0 is a test for the null H0 : σ2

δ = 0 (assuming σ2
γ = 0)

R denotes rejection of the null hypothesis and F denotes fail to reject

Figure 1: Diagram of the pre-test procedure, specific to general.

11



H
γ=0|δ≥0
0

F

H
δ=0|γ=0
0

F

H
γ=0|δ=0
0

F

I

R

H
δ=0|γ≥0
0

F

III

R

IV

R

II

R

H
δ=0|γ≥0
0

F

H
γ=0|δ=0
0

F

H
δ=0|γ=0
0

F

I

R

II

R

III

R

IV

Option c)

H
δ=0|γ≥0
0

F

H
γ=0|δ=0
0

F

H
δ=0|γ=0
0

F

I

R

H
γ=0|δ≥0
0

F

II

R

IV

R

III

R

H
γ=0|δ≥0
0

F

H
δ=0|γ=0
0

F

H
γ=0|δ=0
0

F

I

R

III

R

II

R

IV

Option d)

Notes:
Case I is σ2

γ = 0 and σ2
δ = 0

Case II is σ2
γ = 0 and σ2

δ > 0
Case III is σ2

γ > 0 and σ2
δ = 0
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δ ≥ 0)

H
γ=0|δ=0
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γ = 0 (assuming σ2
δ = 0)

H
δ=0|γ≥0
0 is a test for the null H0 : σ2

δ = 0 (allowing σ2
γ ≥ 0)

H
δ=0|γ=0
0 is a test for the null H0 : σ2

δ = 0 (assuming σ2
γ = 0)

R denotes rejection of the null hypothesis and F denotes fail to reject

Figure 2: Diagram of the pre-test procedure, general to specific.

(1985) and Moulton and Randolph (1989), and has been shown to dominate the Lagrange

Multiplier test (proposed by Breusch and Pagan (1980) and modified for unbalanced clusters

by Baltagi and Li (1990)) in Ma and Vijverberg (2010).

For the null hypotheses H
γ=0|δ≥0
0 and H

δ=0|γ≥0
0 , we use the conditional LM test proposed

by Baltagi, Chang, and Li (1992). They propose testing the individual effects conditional on

the time-specific effects. The corresponding LM test for testing H
γ=0|δ≥0
0 : σ2

γ = 0 (allowing

σ2
δ > 0) is given by:
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Figure 3: Diagram of the pre-test procedure.

LMγ =

√
2σ̃2

2σ̃
2
η√

T (T − 1)[σ̃4
η + (N − 1)σ̃4

2]
D̃γ (25)

where

D̃γ =
T

2
{ 1

σ̃2
2

[
ũ′(J̄N ⊗ J̄T )ũ

σ̃2
2

− 1] +
(N − 1)

σ̃2
η

[
ũ′(EN ⊗ J̄T )ũ

(N − 1)σ̃2
η

− 1]} (26)

with σ̃2
2 = ũ′(J̄N⊗IT )ũ/T , σ̃2

η = ũ′(EN⊗IT )ũ/T (N−1), J̄N is a N×N matrix of ones divided

by N and EN is defined as IN − J̄N . This test statistic LMγ is asymptotically distributed

N(0, 1) under H
γ=0|δ≥0
0 . The estimated disturbances ũ represent the one-way GLS residuals

using the MLEs σ̃2
η and σ̃2

2.

On the other hand, the LM statistic for testing H
δ=0|γ≥0
0 : σ2

δ = 0 (allowing σ2
γ > 0) is

given by:
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LMδ =

√
2σ̃2

1σ̃
2
η√

N(N − 1)[σ̃4
η + (T − 1)σ̃4

1]
D̃δ (27)

where

D̃δ =
N

2
{ 1

σ̃2
1

[
ũ′(J̄N ⊗ J̄T )ũ

σ̃2
1

− 1] +
(T − 1)

σ̃2
η

[
ũ′(J̄N ⊗ ET )ũ

(T − 1)σ̃2
η

− 1]} (28)

with σ̃2
1 = ũ′(IN ⊗ J̄T )ũ/N and σ̃2

η = ũ′(IN ⊗ ET )ũ/N(T − 1). This test statistic LMδ is

asymptotically distributed as N(0, 1) under H
δ=0|γ≥0
0 .

3.2.2 Likelihood Ratio test

An one-sided likelihood ratio (LR) test has the form:

LR = −2(lnL(res)− lnL(unres)) (29)

where lnL(res) denotes log of the restricted maximum likelihood value (under the null hy-

pothesis) and lnL(unres) denotes log of the unrestricted maximum likelihood value. Under

the null H
γ=0|δ=0
0 and H

δ=0|γ=0
0 , the restricted model corresponds to a pooled OLS, while the

unrestricted model corresponds to a one-way individual random effects and one-way time ran-

dom effects respectively, and LR ∼ (1
2
)χ2(0) + (1

2
)χ2(1). Under the null hypotheses H

γ=0|δ≥0
0

and H
δ=0|γ≥0
0 , the unrestricted model corresponds to a two-way random effects model, and

the restricted is a one-way entity random effects model and a one-way time random effects

model respectively, and LR ∼ (1
2
)χ2(0) + (1

2
)χ2(1) in both cases (Baltagi (2013)).

In contrast to the Lagrange multiplier tests, as can be inferred from equation 29, the

Likelihood ratio test requires the estimation of both the model under the null hypothesis

and the model under the alternative hypothesis. For some particular null hypothesis, this

translates to the estimation of a two-way random effects model and a one-way random effects

model using maximum likelihood.
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3.2.3 F test

As described in Greene (2012), an F statistic for the two-way error component model has

the general form:

F =
(R2 −R2

∗)/J

(1−R2)/(n−K)
(30)

Under the null hypothesis, this statistic has a central F distribution with J (number of

restrictions) and n-K degrees of freedom (number of observations minus number of param-

eters). For H
γ=0|δ=0
0 : J = N − 1, n − K = NT − N − 1, R2 is computed estimating a

model with entity fixed effects, and R2
∗ computed with pooled OLS model. For H

δ=0|γ=0
0 :

J = T − 1, n−K = NT −T − 1, R2 is computed estimating a model with time fixed effects,

and R2
∗ computed with pooled OLS model. For H

γ=0|δ≥0
0 : J = N − 1, n−K = NT −N −T ,

R2 is computed estimating a two-way fixed effects model, and R2
∗ computed with only time

effects. For H
δ=0|γ≥0
0 : J = T − 1, n − K = NT − N − T , R2 is computed estimating a

two-way fixed effects model, and R2
∗ computed with only fixed effects.

Similar to the case of the Likelihood ratio, the F test requires the estimation of two

models. However, the required least square estimator is usually simpler than the equivalent

maximum likelihood estimator.

3.2.4 Gourieroux, Holly, and Monfort Test

Following Gourieroux, Holly, and Monfort (1982), from now on GHM, Baltagi et al. (1992)

proposed the following test for the null hypothesis Hγ=0&δ=0
0 :

χ2
m = {A2 +B2 if A > 0, B > 0

= {A2 if A > 0, B ≤ 0

= {B2 if A ≤ 0, B > 0

= {0 if A ≤ 0, B ≤ 0

(31)
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where χ2
m denotes the mixed χ2 distribution. Under the null hypothesis, we have that:

χ2
m ∼ .25χ2(0) + .5χ2(1) + .25χ2(2) (32)

where χ2(0) equals zero with probability one.

4 Monte Carlo Study

In this section we perform an extensive set of Monte Carlo experiments. The objectives of

these experiments are to evaluate the performance in terms of empirical size of doing statis-

tical inference with panel data after applying the previously discussed pretests. We compare

rejection rates of a true null hypothesis obtained with a variance estimator decided ex-ante

(i.e. White heteroskedasticity robust, allowing clustering by entity, allowing clustering by

time, and allowing two-way clustering) against the ones obtained by using a variance esti-

mator dictated by a data-driven diagnostic (i.e. a pretest). We first present a set of baseline

simulations, which addresses the possibility of having a data generating process with distur-

bances that are correlated across one dimension (either entity or time), correlation across

both dimensions, and finally disturbances without any within cluster correlation. We then

also analyze several different robustness checks, in which we vary particular aspects of the

baseline set up.

4.1 Baseline Monte Carlo design

We simulate a panel data set similar to what it is used in Petersen (2009), pretest for entity

(denoted by i and assumed to be a firm component) and/or time (denoted by t and assumed

to be a year component) unobserved cluster effects, estimate the slope coefficient and its

standard error according to the result of the pretest, and finally we perform a t-test on the

slope β of the model with the null hypothesis of β equal to the true value set in the data

generating process. We consider three cases derived from the following model (described
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previously in section 3) with just one exogenous regressor:

yit = βxit + εit (33)

where:

εit = γi + δt + ηit

and

xit = µi + ζt + νit

First, we consider the case where there are cluster effects only in one dimension. We

consider a data set with 250 firms and 10 years. Given that our panel data set has a relatively

small dimension (T ) and a large one (N), we consider two scenarios: i) we generate a data

set with a firm component and no time component (i.e. σ2
γ ≥ 0, σ2

µ ≥ 0, σ2
δ = 0, and σ2

ζ = 0),

which corresponds to having clusters by the largest dimension in terms of the number of

clusters; and ii) we simulate a panel data set with a time component and no firm component

(i.e. σ2
γ = 0, σ2

µ = 0, σ2
δ ≥ 0, and σ2

ζ ≥ 0), which corresponds to having clusters by the

smallest dimension in regards to the number of clusters.3 Across simulations, the true slope

β is equal to 1, the standard deviation of the independent variable xit and the disturbance εit

are both assumed to be constant at 1 and 2, respectively. We run different sets of simulations

where we modify the fraction of the variance in the independent variable, and separately,

in the disturbance that is due to the clusters. This fraction ranges from 0% to 75% in 25%

increments, although we omit 0% in the disturbance as we analyze the case without cluster

effects separately.

Second, a panel data set with both firm and time components (i.e. σ2
γ > 0, σ2

µ > 0,

σ2
δ > 0, and σ2

ζ > 0). We vary the number of firms N from 5 to 500 (5, 10, 20, 50, 125,

250, 500) keeping the total number of observations constant at NT = 2, 500. We assume

3If we were to use a panel data set with equal number of entities and time periods, then the results of
having clusters in either of those dimensions would be symmetrical.
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that one-third of the variability of the disturbance and the independent variable is due to

the firm effect and one-third of the variability is due to the time effect.

Third, a panel data similar to the previous one in terms of size, in which we assume that

there are no firm or year effects (i.e. σ2
δ = 0, σ2

ζ = 0, σ2
γ = 0, and σ2

µ = 0).

4.2 Results

Figure 4a reports the percentage of rejections of the null hypothesis H0 : β = 1 over 5,000

simulations using the different approaches when the data generating process (DGP) con-

tains only unobserved clusters by firm (the dimension with largest number of clusters).4 The

marker labeled CR-F (the circle) corresponds to standard errors computed allowing cluster-

ing by firm in every simulation, which in this case corresponds to the right approach if the

DGP were known and delivers rejection rates close to the nominal size of the test (one per-

cent). Using standard errors that allow two-way clustering (CR-FY ) results in under and

over rejection of the null hypothesis depending of the exercise although never too severe.

Specifically, the empirical size shows over rejection when the variance explained by the firm

clusters in the regressor is smaller relative to the variance explained by the firm clusters in

the disturbance and under rejection when the opposite happens. Clustering by year (CR-Y )

gives results similar to the right model when there is no cluster effect in the regressor X (see

the bottom rows that start with zero in Figure 4a). However, when there is a cluster effect

in the regressor, it over rejects the null hypothesis with percentages that increase when the

share of variance in the disturbance explained by the cluster effects increase and reaches

almost fourty percent in the last row, which contain the highest shares. Similarly, using

White robust standard errors (Rob) give results that also remain similar to the right model

when there is no cluster effect in the regressor but over rejects the null hypothesis when both

the regressor and the disturbance contain cluster effects by firm. In the case of the pretest

estimators, most of them are able to perform as well as the estimator that allows clustering

4Table 2 in the Appendix reports these results with more detail.
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by the right dimension according to the true data generating process. The level of deviation

is never more than 0.06 percentage points relative to the benchmark (CR-F ).

To get some insights about the different performance between the pretest estimators,

Table 6 in the Appendix reports the distribution of chosen models by each pretest in the

different simulation set ups. Despite similar performance in terms of empirical size, the

three different diagnostic tests (diagnostic that uses Lagrange multiplier tests, Likelihood

ratio tests, or F tests) do not always choose models in the same proportions. For example,

the pretest that uses Likelihood ratios tend to choose model 3 (model with an unobserved

firm cluster) slightly more often than the alternatives.

Figure 4b reports the percentage of rejections over 5,000 simulations using different ap-

proaches when the data generating process contains only unobserved clusters by year.5 Given

the small number of clusters (10 years), even clustering by year (see CR-Y in Figure 4b)

produces over rejection of the null hypothesis that in one case goes even slightly above four

percent. Two-way clustering by both firm and year performs very close to the case where we

compute standard errors always clustering by year. Clustering standard errors by the wrong

dimension (see CR-F ) or using only heteroskedasticity-robust standard errors (see Rob) in-

creases severely the percentage of over rejection, with some cases going even above eighty

percent. The pretest estimators perform as well as clustering by year or both dimensions,

reaching similar empirical sizes.

Table 7 in the Appendix reports the distribution of chosen models by each alternative

pretest in the different simulation set ups. PT-2 (which uses LR diagnostics) chooses the

right model slightly more often than the alternatives PT-1 and PT-3 even though they

achieve similar rates of rejection. This is because they tend to choose model 4 (clusters by

time and entity) when they do not pick model 2 (the correct model according to the DGP),

which does not severely distorts inference as we saw above (two-way clustering does not

perform significantly worst than clustering by time).

5Table 3 in the Appendix reports these results with more detail.

19



Figure 4: Empirical size at α = 0.01, by fraction of variance explained by the cluster
effects

(a) Panel data with cluster effects by firm (N=250)
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(b) Panel data with cluster effects by time (T=10)
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Notes:
The graph shows the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1%
out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The y axis contains contains the fraction of the variance in xit and εit that is due to γi and µi in panel 4a
and δt and ζt in panel 4b.
Cl-FY uses standard errors (s.e.) clustered by firm and year, Cl-F uses s.e. clustered by firm, Cl-Y uses
s.e. clustered by year, and Rob uses heteroskedascity-robust s.e.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests, PT-2 using LR tests, and PT-3 using F
tests.
To avoid cluttering the legend and considering that they provide very similar results, the six different
implementations described in Figure 1, Figure 2, and Figure 3 are all plotted with a marker and color
according to whether they use PT-1, PT-2, or PT-3.
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Figure 5 reports the percentage of rejections over 5,000 simulations using the different

approaches when the DGP contains both entity and time unobserved cluster effects.6 Using

White robust standard error (Rob) or clustering by just one of the dimensions (either Cl-F or

Cl-Y ) produces an over rejection of the null hypothesis higher than using two-way clustered

standard errors (Cl-FY ) in all the cases, although smaller when clustering by the smallest

dimension in cases with just 5 or 10 clusters (i.e. clustering by firm with just 5 or 10 firms

or clustering by year with just 5 or 10 years). The pre-test estimators perform as well as the

two-way clustered standard errors in all the cases.

Table 8 in the Appendix reports the distribution of chosen models by each alternative

pretest in the different set ups. In this case, the pretest always identify the right model with

the exception of the simulation with 500 firms where Likelihood ratios identified the right

model in 99.9% of the time.

Finally, Figure 6 reports the percentage of rejections over 5,000 simulations using the

different approaches when the model does not contain any unobserved cluster effects.7 In

this case, clustering standard errors by both dimensions (Cl-FY ) leads to over rejection

in most of the cases but especially when one dimension is relatively small (see rows 5, 10,

250, 500). When the dimensions are more symmetric, then multi-way clustering leads to

under rejection of the null hypothesis (see row 50) and rates of rejection slightly smaller

than White robust standard errors (Rob). The pretest estimator performs as well as the

White robust estimator in general with some deviations in the case of the pretest that uses

Lagrange Multiplier tests (see PT-1 ). Clustering only by one dimension over/under rejects

the null hypothesis depending on the number of clusters.

Table 9 in the Appendix reports the distribution of the models chosen by each pretest

in the different cases. In general, the pretest estimators that use likelihood ratio diagnostics

chooses the right model more often while the lagrange multiplier fails in favor of model 2

6Table 4 in the Appendix reports these results with more detail.
7Table 5 in the Appendix reports these results with more detail.
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Figure 5: Empirical size at α = 0.01, by number of firms with a DGP using two-way
cluster effects
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Notes:
The graph shows the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1%
out of 5,000 simulations.
The y axis contains the number of firms (keeping N*T=2500).
Cl-FY uses standard errors (s.e.) clustered by firm and year, Cl-F uses s.e. clustered by firm, Cl-Y uses
s.e. clustered by year, and Rob uses heteroskedascity-robust s.e.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests, PT-2 using LR tests, and PT-3 using F
tests.
To avoid cluttering the legend and considering that they provided very similar results, the six different
implementations described in Figure 1, Figure 2, and Figure 3 are all plotted with a marker and color
according to whether they use PT-1, PT-2, or PT-3.

and 3 more often.

To sum up, the baseline simulations allow us to state the following results: i) In the

presence of any cluster effect, the use of White heteroskedasticity robust standard errors

leads to severe over rejection of the null hypothesis, ii) In the presence of cluster effects

in one dimension, the use of standard errors clustered by the wrong dimension can lead

to substantial over rejection of the null hypothesis when the regressor also contain cluster

effects, iii) When the DGP contain two-way clustering of disturbances, standard errors that

do not accomodate this correlation tend to over reject the null hypothesis, iv) If the DGP

does not have any kind of within cluster disturbances correlation, allowing for clustering of
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Figure 6: Empirical size at α = 0.01, by number of firms
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Notes:
The graph shows the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1%
out of 5,000 simulations.
The y axis contains the number of firms (keeping N*T=2500).
Cl-FY uses standard errors (s.e.) clustered by firm and year, Cl-F uses s.e. clustered by firm, Cl-Y uses
s.e. clustered by year, and Rob uses heteroskedascity-robust s.e.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests, PT-2 using LR tests, and PT-3 using F
tests.
To avoid cluttering the legend and considering that they provided very similar results, the six different
implementations described in Figure 1, Figure 2, and Figure 3 are all plotted with a marker and color
according to whether they use PT-1, PT-2, or PT-3.

any type distorts the rejection rates although not severely, v) Standard errors that allow

for two-way clustering tend to perform relatively well in this baseline set up, vi) Standard

errors that follow a pretesting procedure tend to perform as well as the preferred method if

we knew the true DGP, and vii) All the options of pretest give similar results, although the

use of Likelihood ratio tend to choose the right model slightly more often.

4.3 Robustness checks

In this section we consider alternative scenarios in the Monte Carlo design to assess the

robustness of our results.
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4.3.1 Non-normal disturbances

Our results are robust to non-normality of the disturbance. We run our main simulations

(except for the experiment without cluster effects) assuming that the cluster effects are drawn

from a chi-square distribution while the remainder component is normally distributed. For

this exercise we keep the size of the standard deviation for the regressor and disturbance in 1

and 2 respectively, as it is done in our main simulations. Figure 7 reports the percentage of

rejections of the null hypothesis over 5,000 simulations using different approaches when the

GDP contains only unobserved clusters by firm in 7a, and only clusters by time in 7b.8 We

find qualitatively similar results, in general the pretest estimators achieve similar empirical

size than using a cluster-robust variance estimator according to the true data generating

process. However, relative to our baseline set up with the existence of cluster effects by firm

(see Figure 4a), the deviation in the rejection rate when using two-way clustered standard

errors is more pronounced, and the pretesting approach closely matches the rejection rate

achieved by the benchmark around 1%.

4.3.2 Non-normal regressor

Our results are also robust to the use of an exogenous regressor X that is distributed log-

normal. We run the same set of simulations as in our main exercises using the exponential

of the exogenous regressor X. However, we set the variance of the regressor to be 0.5 when

there is one cluster component and 0.48 when there are clusters in both dimensions. This

set up is similar to a set of simulations done in Mackinnon, Nielsen, and Webb (2019) in the

context of estimation of standard errors using Wild cluster bootstrap.

The results are reported in the Appendix (see Table 17, 18, 19 and 20). We find qual-

itatively similar results, the pretest estimators achieve similar empirical size than using a

cluster-robust variance estimator according to the true data generating process.

8Detailed tables are reported in the Appendix (see Table 14, 15, and 16)
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Figure 7: Empirical size at α = 0.01, by fraction of variance explained by the cluster
effects

(a) Panel data with cluster effects by firm (N=250)
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(b) Panel data with cluster effects by time (T=10)
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Notes:
The graph shows the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1%
out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The y axis contains contains the fraction of the variance in xit and εit that is due to γi and µi in panel 7a
and δt and ζt in panel 7b.
Cl-FY uses standard errors (s.e.) clustered by firm and year, Cl-F uses s.e. clustered by firm, Cl-Y uses
s.e. clustered by year, and Rob uses heteroskedascity-robust s.e.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests, PT-2 using LR tests, and PT-3 using F
tests.
To avoid cluttering the legend and considering that they provide very similar results, the six different
implementations described in Figure 1, Figure 2, and Figure 3 are all plotted with a marker and color
according to whether they use PT-1, PT-2, or PT-3.
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Similar to the case of non-normal disturbances reviewed in the previous subsection, we

find a more pronounced deviation in the rejection rate (relative to the baseline set up) when

there are cluster effects by firm (see Figure 6).

4.3.3 The case of temporary firm effects

The pretest performance depends on the capacity of the individual tests to identify the

unobserved cluster effects. This may be more difficult when the error components are not

fixed and they vanish over time. In this set of simulations, we explore the performance of

the pretest estimator in this context.

We follow the data structure of Petersen (2009) with a simulation that include both a

permanent component (a fixed firm effect) and a temporary component (nonfixed firm effect)

that is assumed to be a first-order autoregressive process. We construct the nonfirm effect

share of the disturbance (ηit) as:

ηit = ξit if t = 1

= φηit−1 +
√

1− φ2ξit if t > 1

(34)

where φ is the first-order auto correlation between ηit and ηit−1, and the correlation between

ηit and ηit−k is φk.

We construct the independent variable with the same logic using:

νit = κit if t = 1

= φνit−1 +
√

1− φ2κit if t > 1

(35)

where ξit and κit are both uncorrelated.

We generate a panel data set with 250 firms and 10 years in which we try 3 different

combinations of φ, and the share of the variance of εit and xit explained by the fixed firm

component.
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Figure 8: Empirical size at α = 0.01, by fraction of variance explained by the cluster
effects

(a) Panel data with cluster effects by firm (N=250)
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(b) Panel data with cluster effects by time (T=10)
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Notes:
The graph shows the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1%
out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The y axis contains contains the fraction of the variance in xit and εit that is due to γi and µi in panel 8a
and δt and ζt in panel 8b.
Cl-FY uses standard errors (s.e.) clustered by firm and year, Cl-F uses s.e. clustered by firm, Cl-Y uses
s.e. clustered by year, and Rob uses heteroskedascity-robust s.e.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests, PT-2 using LR tests, and PT-3 using F
tests.
To avoid cluttering the legend and considering that they provide very similar results, the six different
implementations described in Figure 1, Figure 2, and Figure 3 are all plotted with a marker and color
according to whether they use PT-1, PT-2, or PT-3.
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Figure 9 reports the results of the simulations.9 We find that our results are still valid in

the case of a temporary firm effect.

Applying two-way clustered standard errors when there is only a temporary cluster effect

by firm produces under rejection the null hypothesis. On the contrary, clustering by year or

using White robust standard errors generates rejection rates that can go close to 40% in one

of the set ups. However, the pretest estimators achieves rejection rates that in some cases

are even closer to the nominal size than when we compute the standard errors clustering by

firm.

When we consider a time cluster effect plus a temporary cluster effect by firm, we get

some under rejection of the null hypothesis with the two-way clustered standard errors, which

is followed by the pretest alternatives. With all the other approaches we get important over

rejection.

5 An Empirical Application in Finance

In this section we analyze an empirical example of the impact of different approaches to

compute the standard errors and the pretest application. We replicate a panel data regression

that has been studied in Moskowitz, Ooi, and Pedersen (2012), and recently revisited in

Huang, Li, Wang, and Zhou (2020).10 The latter paper assesses the existence of “time series

momentum” (i.e. whether past returns predict future returns) in equity index, currency,

commodity, and bond futures using 55 liquid instruments for a sample period from January

1985 to December 2015. Its empirical analysis uses univariate time series regression, and

pooled regression, which it is the approach we follow.

9Table 21 and 22 in the Appendix contain detailed results of the simulations.
10The data is available at http://jfe.rochester.edu/Huang Li Wang Zhou data.zip.
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Figure 9: Empirical size at α = 0.01, by fraction of variance explained by the cluster
effects

(a) DGP with temporary cluster effects by firm
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(b) DGP with temporary cluster effects by firm and cluster effects by time

●

●

●

0/0,0.5/0.5

0.9/0.9,0.5/0.5

0.75/0.75,0.5/0.5

1 3 10 30
Rejection rate

S
ha

re
s

●

Cl−FY

Cl−F

Cl−Y

Rob

PT1

PT2

PT3

Notes:
The graph shows the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1%
out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The y axis contains the values of φ and the share of the variance of εit and xit explained by the cluster
components.
Cl-FY uses standard errors (s.e.) clustered by firm and year, Cl-F uses s.e. clustered by firm, Cl-Y uses
s.e. clustered by year, and Rob uses heteroskedascity-robust s.e.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests, PT-2 using LR tests, and PT-3 using F
tests.
To avoid cluttering the legend and considering that they provide very similar results, the six different
implementations described in Figure 1, Figure 2, and Figure 3 are all plotted with a marker and color
according to whether they use PT-1, PT-2, or PT-3.
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We estimate the following specification:11

rst/σ
s
t−1 = α + βhr

s
t−h/σ

s
t−h−1 + εst (36)

where rst is the excess return for instrument s in month t, h is the lag considered (h=1,..,12 ),

and σst−1 defined as ex ante volatility:

(σst )
2 = 261

∞∑
i=0

(1− δ)δi(rst−1−i − r̄st )2 (37)

where the scalar 261 scales the variance to be annual, the weights (1 − δ)δi add up to one,

and r̄st is the exponentially weighted average return computed similarly.

Figure 10 reports 95% confidence intervals for the twelve lags considered using different

assumptions regarding the disturbances. There are important differences across variance

estimators, especially between the White robust estimator or clustering by stock versus

clustering by month or two-way clustered standard errors. Computing the standard errors

using two-way clustering in this example, does not significantly increase the size of the

confidence interval relative to the use of standard errors clustered by month.

Table 1 reports the pretest using F tests. We find that it favors the use of two-way cluster

standard errors over the one-way clustered by time as done in Moskowitz et al. (2012) and

Huang et al. (2020). Nonetheless, for this particular application both alternatives make little

difference regarding the rejection of the null as previously pointed out.

The similarity of the confidence intervals obtained using standard errors clustered by

time relative to those using two-way clustering is not a general result, as evidenced in the

Monte Carlo simulations and the additional economic applications that we include in the

Appendix.

11We restrict the beginning of the sample period to January 1993, so the panel becomes balanced. The
results are qualitatively similar to the original length.
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Figure 10: 95% Confidence intervals
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6 Final Remarks

This paper analyzes the statistical inference regarding the parameters of a panel data model

when it is first subjected to a pretest for the presence of individual and/or time unobserved

cluster effects. Using simulations we compare the performance of six proposed diagnostics

that use statistical tests available in the literature: Lagrange Multiplier, Likelihood ratios,

and F tests. We find that these pretest estimators are a viable alternative to estimate panel

data models with unobserved cluster effects. The empirical size of the t-test after pretesting

remains close to the size of the test using a correction for the standard errors in line with

true data generating process. These results are robust to the presence of temporary clusters

effects, and non-normality of the disturbance, as well as non-normality of the regressor.
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Table 1: Pretesting using F tests

F1 p-value F1 p-value
h=1 4.87 0.00 1.87 0.00
h=2 4.88 0.00 1.94 0.00
h=3 4.80 0.00 1.83 0.00
h=4 4.88 0.00 1.95 0.00
h=5 4.87 0.00 2.00 0.00
h=6 4.85 0.00 1.84 0.00
h=7 4.87 0.00 1.98 0.00
h=8 4.88 0.00 1.85 0.00
h=9 4.89 0.00 1.84 0.00
h=10 4.86 0.00 1.77 0.00
h=11 4.87 0.00 1.72 0.00
h=12 4.82 0.00 2.02 0.00

Notes: F1 corresponds to a F statistic for the null hypothesis that all month fixed effects are zero, the
associated p-values are reported next to them, and F2 corresponds to a F statistic for the null hypothesis
that all asset fixed effects are zero, the associated p-values are reported next to them.
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Appendix

Table 2: Empirical size at α = 0.01, by fraction of firm component

Shares Cl.FY Cl.F Cl.Y Rob PT.1a PT.1b PT.1c PT.1d PT.1e PT.1f PT.2a PT.2b PT.2c PT.2d PT.2e PT.2f PT.3a PT.3b PT.3c PT.3d PT.3e PT.3f
0-25 0.96 0.88 0.86 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
0-50 1.32 1.04 1.00 0.98 1.08 1.08 1.08 1.08 1.08 1.08 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
0-75 1.30 1.00 0.96 0.96 1.02 1.02 1.02 1.02 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
25-25 0.46 1.26 3.42 4.68 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
25-50 0.34 1.20 7.20 9.10 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18
25-75 0.38 1.38 11.36 13.04 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38
50-25 0.38 1.54 7.24 8.56 1.48 1.48 1.48 1.48 1.48 1.48 1.50 1.50 1.50 1.50 1.50 1.50 1.48 1.48 1.48 1.48 1.48 1.48
50-50 0.32 1.54 16.02 16.50 1.52 1.52 1.52 1.52 1.52 1.52 1.54 1.54 1.54 1.54 1.54 1.54 1.52 1.52 1.52 1.52 1.52 1.52
50-75 0.32 1.46 25.80 23.72 1.44 1.44 1.44 1.44 1.44 1.44 1.46 1.46 1.46 1.46 1.46 1.46 1.44 1.44 1.44 1.44 1.44 1.44
75-25 0.34 1.60 11.62 12.46 1.56 1.56 1.56 1.56 1.56 1.56 1.58 1.58 1.58 1.58 1.58 1.58 1.56 1.56 1.56 1.56 1.56 1.56
75-50 0.28 1.58 26.00 23.30 1.54 1.54 1.54 1.54 1.54 1.54 1.56 1.56 1.56 1.56 1.56 1.56 1.54 1.54 1.54 1.54 1.54 1.54
75-75 0.34 1.54 39.86 30.30 1.50 1.50 1.50 1.50 1.50 1.50 1.52 1.52 1.52 1.52 1.52 1.52 1.50 1.50 1.50 1.50 1.50 1.50

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to γi and µi respectively.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 3: Empirical size at α = 0.01, by fraction of time component

Shares Cl.FY Cl.F Cl.Y Rob PT.1a PT.1b PT.1c PT.1d PT.1e PT.1f PT.2a PT.2b PT.2c PT.2d PT.2e PT.2f PT.3a PT.3b PT.3c PT.3d PT.3e PT.3f
0-25 1.22 0.96 1.10 0.88 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
0-50 1.14 1.06 1.00 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0-75 1.10 1.08 0.88 1.12 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
25-25 1.44 50.82 1.36 50.28 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38
25-50 1.32 64.62 1.32 63.30 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32
25-75 1.40 72.06 1.36 70.66 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36
50-25 2.58 64.84 2.54 63.58 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
50-50 2.58 75.92 2.60 74.44 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60
50-75 2.64 82.36 2.64 79.76 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64
75-25 4.06 72.54 4.08 70.82 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.08
75-50 3.92 82.42 3.90 79.94 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90
75-75 3.94 88.20 3.90 84.14 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to δt and ζt respectively.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 4: Empirical size at α = 0.01, by number of firms

Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
3.80 9.04 56.08 69.28 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80
1.38 5.48 39.06 61.40 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38
0.56 3.60 17.54 52.32 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
0.42 8.30 3.32 45.26 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42
0.48 28.10 1.18 52.12 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
1.42 49.58 2.20 62.70 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
4.12 64.56 4.72 69.04 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.10

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
The first column contains the number of firms (keeping N*T=2500).
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 5: Empirical size at α = 0.01, by number of firms when there are no clusters

Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
3.42 6.10 0.06 0.84 1.02 0.98 0.98 1.02 0.88 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.86 0.86 0.86 0.86 0.84 0.84
1.44 3.44 0.26 1.00 1.02 1.00 1.00 1.02 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.02 1.04 1.02
0.74 2.34 0.20 1.00 0.88 0.84 0.84 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.44 1.02 0.18 0.86 0.78 0.76 0.76 0.78 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
0.74 1.14 0.54 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
1.38 1.04 1.06 0.92 0.84 0.84 0.84 0.84 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.92 0.92 0.92 0.92 0.92
3.80 0.82 3.58 0.98 1.06 1.08 1.08 1.06 1.02 1.00 0.98 0.98 0.98 0.98 0.98 0.98 1.02 1.02 1.02 1.02 1.00 1.00

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
The first column contains the number of firms (keeping N*T=2500).
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e to Figure 3.
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A.1 Selected models

Table 6: Simulation with a firm effect - Selected models

Variance Model PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
1 0-0 1 77.72 77.72 77.72 77.72 97.52 98.5 98.7 98.7 98.7 98.7 98.7 99.04 98.1 98.1 98.1 98.1 98.04 98.54
2 0-0 2 9.44 10.3 10.3 9.44 1.56 1.02 0.52 0.52 0.52 0.52 0.52 0.52 1.06 1.06 1.06 1.06 1.1 1
3 0-0 3 12.84 11.98 11.98 12.84 0.92 0.48 0.78 0.78 0.78 0.78 0.78 0.44 0.84 0.84 0.84 0.84 0.86 0.46
4 0-0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0-25 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0-25 3 98.54 98.54 98.54 98.54 98.54 98.54 99.5 99.5 99.5 99.5 99.5 99.5 99.18 99.18 99.18 99.18 99.18 99.18
8 0-25 4 1.46 1.46 1.46 1.46 1.46 1.46 0.5 0.5 0.5 0.5 0.5 0.5 0.82 0.82 0.82 0.82 0.82 0.82
9 0-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0-50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0-50 3 98.56 98.56 98.56 98.56 98.56 98.56 99.48 99.48 99.48 99.48 99.48 99.48 99.18 99.18 99.18 99.18 99.18 99.18
12 0-50 4 1.44 1.44 1.44 1.44 1.44 1.44 0.52 0.52 0.52 0.52 0.52 0.52 0.82 0.82 0.82 0.82 0.82 0.82
13 0-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0-75 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0-75 3 98.56 98.56 98.56 98.56 98.56 98.56 99.46 99.46 99.46 99.46 99.46 99.46 99.18 99.18 99.18 99.18 99.18 99.18
16 0-75 4 1.44 1.44 1.44 1.44 1.44 1.44 0.54 0.54 0.54 0.54 0.54 0.54 0.82 0.82 0.82 0.82 0.82 0.82
17 25-0 1 77.28 77.28 77.28 77.28 97.74 98.74 98.92 98.92 98.92 98.92 98.84 99.2 98.28 98.28 98.28 98.28 98.26 98.82
18 25-0 2 10.3 11.42 11.42 10.3 1.36 0.8 0.32 0.32 0.32 0.32 0.36 0.36 0.78 0.78 0.78 0.78 0.82 0.72
19 25-0 3 12.4 11.28 11.28 12.4 0.88 0.44 0.76 0.76 0.76 0.76 0.8 0.44 0.94 0.94 0.94 0.94 0.92 0.46
20 25-0 4 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0
21 25-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 25-25 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 25-25 3 98.56 98.56 98.56 98.56 98.56 98.56 99.4 99.4 99.4 99.4 99.4 99.4 99.08 99.08 99.08 99.08 99.08 99.08
24 25-25 4 1.44 1.44 1.44 1.44 1.44 1.44 0.6 0.6 0.6 0.6 0.6 0.6 0.92 0.92 0.92 0.92 0.92 0.92
25 25-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 25-50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 25-50 3 98.56 98.56 98.56 98.56 98.56 98.56 99.36 99.36 99.36 99.36 99.36 99.36 99.08 99.08 99.08 99.08 99.08 99.08
28 25-50 4 1.44 1.44 1.44 1.44 1.44 1.44 0.64 0.64 0.64 0.64 0.64 0.64 0.92 0.92 0.92 0.92 0.92 0.92
29 25-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 25-75 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 25-75 3 98.56 98.56 98.56 98.56 98.56 98.56 99.36 99.36 99.36 99.36 99.36 99.36 99.08 99.08 99.08 99.08 99.08 99.08
32 25-75 4 1.44 1.44 1.44 1.44 1.44 1.44 0.64 0.64 0.64 0.64 0.64 0.64 0.92 0.92 0.92 0.92 0.92 0.92
33 50-0 1 77.42 77.42 77.42 77.42 97.7 98.76 98.88 98.88 98.88 98.88 98.82 99.22 98.32 98.32 98.32 98.32 98.3 98.86
34 50-0 2 10.32 11.42 11.42 10.32 1.4 0.8 0.32 0.32 0.32 0.32 0.36 0.36 0.8 0.8 0.8 0.8 0.82 0.7
35 50-0 3 12.24 11.14 11.14 12.24 0.88 0.42 0.8 0.8 0.8 0.8 0.82 0.42 0.88 0.88 0.88 0.88 0.88 0.44
36 50-0 4 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0
37 50-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 50-25 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 50-25 3 98.56 98.56 98.56 98.56 98.56 98.56 99.4 99.4 99.4 99.4 99.4 99.4 99.08 99.08 99.08 99.08 99.08 99.08
40 50-25 4 1.44 1.44 1.44 1.44 1.44 1.44 0.6 0.6 0.6 0.6 0.6 0.6 0.92 0.92 0.92 0.92 0.92 0.92
41 50-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 50-50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 50-50 3 98.56 98.56 98.56 98.56 98.56 98.56 99.38 99.38 99.38 99.38 99.38 99.38 99.08 99.08 99.08 99.08 99.08 99.08
44 50-50 4 1.44 1.44 1.44 1.44 1.44 1.44 0.62 0.62 0.62 0.62 0.62 0.62 0.92 0.92 0.92 0.92 0.92 0.92
45 50-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 50-75 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 50-75 3 98.56 98.56 98.56 98.56 98.56 98.56 99.36 99.36 99.36 99.36 99.36 99.36 99.08 99.08 99.08 99.08 99.08 99.08
48 50-75 4 1.44 1.44 1.44 1.44 1.44 1.44 0.64 0.64 0.64 0.64 0.64 0.64 0.92 0.92 0.92 0.92 0.92 0.92
49 75-0 1 77.6 77.6 77.6 77.6 97.72 98.78 98.92 98.92 98.92 98.92 98.86 99.2 98.3 98.3 98.3 98.3 98.3 98.86
50 75-0 2 10.36 11.5 11.5 10.36 1.4 0.78 0.32 0.32 0.32 0.32 0.36 0.36 0.82 0.82 0.82 0.82 0.82 0.7
51 75-0 3 12.02 10.88 10.88 12.02 0.86 0.42 0.76 0.76 0.76 0.76 0.78 0.44 0.88 0.88 0.88 0.88 0.88 0.44
52 75-0 4 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0
53 75-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 75-25 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 75-25 3 98.56 98.56 98.56 98.56 98.56 98.56 99.4 99.4 99.4 99.4 99.4 99.4 99.08 99.08 99.08 99.08 99.08 99.08
56 75-25 4 1.44 1.44 1.44 1.44 1.44 1.44 0.6 0.6 0.6 0.6 0.6 0.6 0.92 0.92 0.92 0.92 0.92 0.92
57 75-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
58 75-50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
59 75-50 3 98.56 98.56 98.56 98.56 98.56 98.56 99.38 99.38 99.38 99.38 99.38 99.38 99.08 99.08 99.08 99.08 99.08 99.08
60 75-50 4 1.44 1.44 1.44 1.44 1.44 1.44 0.62 0.62 0.62 0.62 0.62 0.62 0.92 0.92 0.92 0.92 0.92 0.92
61 75-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
62 75-75 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 75-75 3 98.56 98.56 98.56 98.56 98.56 98.56 99.36 99.36 99.36 99.36 99.36 99.36 99.08 99.08 99.08 99.08 99.08 99.08
64 75-75 4 1.44 1.44 1.44 1.44 1.44 1.44 0.64 0.64 0.64 0.64 0.64 0.64 0.92 0.92 0.92 0.92 0.92 0.92

The chosen model corresponds to Case 1: σ2
γ = 0 and σ2

δ = 0; Case 2: σ2
γ = 0 and σ2

δ > 0; Case 3: σ2
γ > 0

and σ2
δ = 0; and Case 4: σ2

γ > 0 and σ2
δ > 0.
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Table 7: Simulation with a time effect - Selected models

Variance Model PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
1 0-0 1 77.72 77.72 77.72 77.72 97.52 98.5 98.7 98.7 98.7 98.7 98.7 99.04 98.1 98.1 98.1 98.1 98.04 98.54
2 0-0 2 9.44 10.3 10.3 9.44 1.56 1.02 0.52 0.52 0.52 0.52 0.52 0.52 1.06 1.06 1.06 1.06 1.1 1
3 0-0 3 12.84 11.98 11.98 12.84 0.92 0.48 0.78 0.78 0.78 0.78 0.78 0.44 0.84 0.84 0.84 0.84 0.86 0.46
4 0-0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0-25 2 98.98 98.98 98.98 98.98 98.98 98.98 99.24 99.24 99.24 99.24 99.24 99.24 99.2 99.2 99.2 99.2 99.2 99.2
7 0-25 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0-25 4 1.02 1.02 1.02 1.02 1.02 1.02 0.76 0.76 0.76 0.76 0.76 0.76 0.8 0.8 0.8 0.8 0.8 0.8
9 0-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0-50 2 98.98 98.98 98.98 98.98 98.98 98.98 99.24 99.24 99.24 99.24 99.24 99.24 99.2 99.2 99.2 99.2 99.2 99.2
11 0-50 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0-50 4 1.02 1.02 1.02 1.02 1.02 1.02 0.76 0.76 0.76 0.76 0.76 0.76 0.8 0.8 0.8 0.8 0.8 0.8
13 0-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0-75 2 98.98 98.98 98.98 98.98 98.98 98.98 99.24 99.24 99.24 99.24 99.24 99.24 99.2 99.2 99.2 99.2 99.2 99.2
15 0-75 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0-75 4 1.02 1.02 1.02 1.02 1.02 1.02 0.76 0.76 0.76 0.76 0.76 0.76 0.8 0.8 0.8 0.8 0.8 0.8
17 25-0 1 77.58 77.58 77.58 77.58 97.94 98.96 99.1 99.1 99.1 99.1 99.06 99.38 98.36 98.36 98.36 98.36 98.42 99
18 25-0 2 9.4 10.56 10.56 9.4 1.12 0.62 0.18 0.18 0.18 0.18 0.2 0.2 0.8 0.8 0.8 0.8 0.74 0.58
19 25-0 3 12.98 11.82 11.82 12.98 0.9 0.38 0.7 0.7 0.7 0.7 0.72 0.4 0.82 0.82 0.82 0.82 0.82 0.4
20 25-0 4 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
21 25-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 25-25 2 99.08 99.08 99.08 99.08 99.08 99.08 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24
23 25-25 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 25-25 4 0.92 0.92 0.92 0.92 0.92 0.92 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
25 25-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 25-50 2 99.08 99.08 99.08 99.08 99.08 99.08 99.26 99.26 99.26 99.26 99.26 99.26 99.24 99.24 99.24 99.24 99.24 99.24
27 25-50 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 25-50 4 0.92 0.92 0.92 0.92 0.92 0.92 0.74 0.74 0.74 0.74 0.74 0.74 0.76 0.76 0.76 0.76 0.76 0.76
29 25-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 25-75 2 99.08 99.08 99.08 99.08 99.08 99.08 99.28 99.28 99.28 99.28 99.28 99.28 99.24 99.24 99.24 99.24 99.24 99.24
31 25-75 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 25-75 4 0.92 0.92 0.92 0.92 0.92 0.92 0.72 0.72 0.72 0.72 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76
33 50-0 1 78.26 78.26 78.26 78.26 98.16 99.06 99.1 99.1 99.1 99.1 99.08 99.4 98.42 98.42 98.42 98.42 98.5 99.1
34 50-0 2 8.7 9.72 9.72 8.7 0.86 0.52 0.18 0.18 0.18 0.18 0.18 0.18 0.72 0.72 0.72 0.72 0.66 0.48
35 50-0 3 13 11.98 11.98 13 0.94 0.38 0.7 0.7 0.7 0.7 0.72 0.4 0.82 0.82 0.82 0.82 0.8 0.38
36 50-0 4 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04
37 50-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 50-25 2 99.08 99.08 99.08 99.08 99.08 99.08 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24
39 50-25 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 50-25 4 0.92 0.92 0.92 0.92 0.92 0.92 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
41 50-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 50-50 2 99.08 99.08 99.08 99.08 99.08 99.08 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24
43 50-50 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 50-50 4 0.92 0.92 0.92 0.92 0.92 0.92 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
45 50-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 50-75 2 99.08 99.08 99.08 99.08 99.08 99.08 99.26 99.26 99.26 99.26 99.26 99.26 99.24 99.24 99.24 99.24 99.24 99.24
47 50-75 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 50-75 4 0.92 0.92 0.92 0.92 0.92 0.92 0.74 0.74 0.74 0.74 0.74 0.74 0.76 0.76 0.76 0.76 0.76 0.76
49 75-0 1 78.8 78.8 78.8 78.8 98.28 99.1 99.1 99.1 99.1 99.1 99.08 99.4 98.36 98.36 98.36 98.36 98.36 99.12
50 75-0 2 8.12 9.12 9.12 8.12 0.74 0.48 0.18 0.18 0.18 0.18 0.18 0.18 0.76 0.76 0.76 0.76 0.8 0.46
51 75-0 3 13.04 12.04 12.04 13.04 0.94 0.38 0.7 0.7 0.7 0.7 0.72 0.4 0.84 0.84 0.84 0.84 0.8 0.38
52 75-0 4 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04
53 75-25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 75-25 2 99.08 99.08 99.08 99.08 99.08 99.08 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24
55 75-25 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 75-25 4 0.92 0.92 0.92 0.92 0.92 0.92 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
57 75-50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
58 75-50 2 99.08 99.08 99.08 99.08 99.08 99.08 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24
59 75-50 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 75-50 4 0.92 0.92 0.92 0.92 0.92 0.92 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
61 75-75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
62 75-75 2 99.08 99.08 99.08 99.08 99.08 99.08 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24 99.24
63 75-75 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 75-75 4 0.92 0.92 0.92 0.92 0.92 0.92 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

The chosen model corresponds to Case 1: σ2
γ = 0 and σ2

δ = 0; Case 2: σ2
γ = 0 and σ2

δ > 0; Case 3: σ2
γ > 0

and σ2
δ = 0; and Case 4: σ2

γ > 0 and σ2
δ > 0.
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Table 8: Simulation with both firm and time effect - Selected models

Firms Model PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
1 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 5 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 10 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 10 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
9 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 20 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 20 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 20 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
13 50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 50 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 50 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
17 125 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 125 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 125 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 125 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
21 250 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 250 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 250 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 250 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
25 500 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 500 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 500 3 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02
28 500 4 99.98 99.98 99.98 99.98 99.98 99.98 99.96 99.96 99.96 99.96 99.96 99.96 99.98 99.98 99.98 99.98 99.98 99.98

The chosen model corresponds to Case 1: σ2
γ = 0 and σ2

δ = 0; Case 2: σ2
γ = 0 and σ2

δ > 0; Case 3: σ2
γ > 0

and σ2
δ = 0; and Case 4: σ2

γ > 0 and σ2
δ > 0.
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Table 9: Simulation without firm or time effect - Selected models

Firms Model PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
1 5 1 78.96 78.96 78.96 78.96 98.48 99.12 99.22 99.22 99.22 99.22 99.2 99.44 98.52 98.52 98.52 98.52 98.6 99.2
2 5 2 11.92 12.92 12.92 11.92 0.58 0.4 0.62 0.62 0.62 0.62 0.64 0.4 0.74 0.74 0.74 0.74 0.76 0.4
3 5 3 9.1 8.1 8.1 9.1 0.92 0.46 0.16 0.16 0.16 0.16 0.16 0.16 0.72 0.72 0.72 0.72 0.62 0.38
4 5 4 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0.02 0.02 0.02 0.02 0.02 0.02
5 10 1 78.64 78.64 78.64 78.64 98.18 99.02 99.16 99.16 99.16 99.16 99.14 99.44 98.28 98.28 98.28 98.28 98.24 99.1
6 10 2 11.28 12.3 12.3 11.28 0.78 0.38 0.66 0.66 0.66 0.66 0.68 0.38 0.82 0.82 0.82 0.82 0.82 0.38
7 10 3 10.08 9.06 9.06 10.08 1.04 0.6 0.18 0.18 0.18 0.18 0.18 0.18 0.9 0.9 0.9 0.9 0.94 0.52
8 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 20 1 77.74 77.74 77.74 77.74 97.58 98.4 98.74 98.74 98.74 98.74 98.68 98.78 97.76 97.76 97.76 97.76 97.78 98.42

10 20 2 11.4 12.34 12.34 11.4 1.24 0.8 0.82 0.82 0.82 0.82 0.84 0.74 1.18 1.18 1.18 1.18 1.16 0.78
11 20 3 10.86 9.92 9.92 10.86 1.18 0.8 0.44 0.44 0.44 0.44 0.48 0.48 1.06 1.06 1.06 1.06 1.06 0.8
12 20 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 50 1 76.76 76.76 76.76 76.76 97.98 98.88 98.9 98.9 98.9 98.9 98.88 98.94 98.2 98.2 98.2 98.2 98.32 98.9
14 50 2 10.9 11.94 11.94 10.9 1.12 0.52 0.5 0.5 0.5 0.5 0.5 0.46 0.88 0.88 0.88 0.88 0.82 0.5
15 50 3 12.34 11.3 11.3 12.34 0.9 0.6 0.6 0.6 0.6 0.6 0.62 0.6 0.92 0.92 0.92 0.92 0.86 0.6
16 50 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 125 1 76.86 76.86 76.86 76.86 97.38 98.64 98.76 98.76 98.76 98.76 98.74 99.02 97.92 97.92 97.92 97.92 97.8 98.68
18 125 2 10.34 11.58 11.58 10.34 1.3 0.76 0.44 0.44 0.44 0.44 0.46 0.46 1.02 1.02 1.02 1.02 1.04 0.76
19 125 3 12.76 11.52 11.52 12.76 1.28 0.56 0.78 0.78 0.78 0.78 0.78 0.5 1.04 1.04 1.04 1.04 1.14 0.54
20 125 4 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
21 250 1 78.5 78.5 78.5 78.5 97.78 98.66 98.72 98.72 98.72 98.72 98.7 99.08 97.98 97.98 97.98 97.98 98 98.74
22 250 2 8.68 9.56 9.56 8.68 1.16 0.78 0.4 0.4 0.4 0.4 0.42 0.42 1 1 1 1 1 0.7
23 250 3 12.8 11.92 11.92 12.8 1.04 0.54 0.88 0.88 0.88 0.88 0.88 0.5 1 1 1 1 0.98 0.54
24 250 4 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0.02 0.02 0.02 0.02 0.02 0.02
25 500 1 79.08 79.08 79.08 79.08 97.92 98.76 98.82 98.82 98.82 98.82 98.74 99.32 97.74 97.74 97.74 97.74 97.98 98.82
26 500 2 7.82 8.62 8.62 7.82 1.04 0.72 0.18 0.18 0.18 0.18 0.18 0.18 1.12 1.12 1.12 1.12 0.86 0.66
27 500 3 13.08 12.28 12.28 13.08 1.02 0.5 1 1 1 1 1.08 0.5 1.12 1.12 1.12 1.12 1.14 0.5
28 500 4 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0.02 0.02 0.02 0.02 0.02 0.02

The chosen model corresponds to Case 1: σ2
γ = 0 and σ2

δ = 0; Case 2: σ2
γ = 0 and σ2

δ > 0; Case 3: σ2
γ > 0

and σ2
δ = 0; and Case 4: σ2

γ > 0 and σ2
δ > 0.
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A.2 Rejection rates of individual tests

Table 10: Simulation with a firm effect - rejection rates for individual tests

LM LR F GHM

H
γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 Hγ=0,δ=0

0

0-25 100.00 2.28 100.00 1.46 100.00 0.04 100.00 0.50 100.00 0.04 100.00 0.82 100.00
0-50 100.00 0.06 100.00 1.44 100.00 0.00 100.00 0.52 100.00 0.00 100.00 0.82 100.00
0-75 100.00 0.00 100.00 1.44 100.00 0.00 100.00 0.54 100.00 0.00 100.00 0.82 100.00

25-25 100.00 2.44 100.00 1.44 100.00 0.00 100.00 0.60 100.00 0.02 100.00 0.92 100.00
25-50 100.00 0.04 100.00 1.44 100.00 0.00 100.00 0.64 100.00 0.00 100.00 0.92 100.00
25-75 100.00 0.00 100.00 1.44 100.00 0.00 100.00 0.64 100.00 0.00 100.00 0.92 100.00
50-25 100.00 2.42 100.00 1.44 100.00 0.00 100.00 0.60 100.00 0.02 100.00 0.92 100.00
50-50 100.00 0.04 100.00 1.44 100.00 0.00 100.00 0.62 100.00 0.00 100.00 0.92 100.00
50-75 100.00 0.00 100.00 1.44 100.00 0.00 100.00 0.64 100.00 0.00 100.00 0.92 100.00
75-25 100.00 2.42 100.00 1.44 100.00 0.00 100.00 0.60 100.00 0.02 100.00 0.92 100.00
75-50 100.00 0.04 100.00 1.44 100.00 0.00 100.00 0.62 100.00 0.00 100.00 0.92 100.00
75-75 100.00 0.00 100.00 1.44 100.00 0.00 100.00 0.64 100.00 0.00 100.00 0.92 100.00

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of
5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to γi and µi respectively.
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Table 11: Simulation with a time effect - rejection rates for individual tests

LM LR F GHM

H
γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 Hγ=0,δ=0

0

0-25 0.18 100.00 1.02 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.80 100.00 100.00
0-50 0.00 100.00 1.02 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.80 100.00 100.00
0-75 0.00 100.00 1.02 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.80 100.00 100.00

25-25 0.14 100.00 0.92 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.76 100.00 100.00
25-50 0.00 100.00 0.92 100.00 0.00 100.00 0.74 100.00 0.00 100.00 0.76 100.00 100.00
25-75 0.00 100.00 0.92 100.00 0.00 100.00 0.72 100.00 0.00 100.00 0.76 100.00 100.00
50-25 0.16 100.00 0.92 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.76 100.00 100.00
50-50 0.00 100.00 0.92 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.76 100.00 100.00
50-75 0.00 100.00 0.92 100.00 0.00 100.00 0.74 100.00 0.00 100.00 0.76 100.00 100.00
75-25 0.18 100.00 0.92 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.76 100.00 100.00
75-50 0.00 100.00 0.92 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.76 100.00 100.00
75-75 0.00 100.00 0.92 100.00 0.00 100.00 0.76 100.00 0.00 100.00 0.76 100.00 100.00

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of
5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to δt and ζt respectively.
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Table 12: Simulation with both firm and time effects - individual tests

LM LR F GHM

H
γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 Hγ=0,δ=0

0

5 100.00 99.96 100.00 100.00 99.98 99.84 100.00 100.00 99.98 99.86 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

125 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
250 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
500 99.94 99.98 100.00 99.98 99.84 99.88 100.00 99.96 99.86 99.92 100.00 99.98 100.00

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of
5,000 simulations.
The first column contains the number of firms (keeping N*T=2500).
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Table 13: Simulation without both firm and time effects - rejection rates for individual
tests

LM LR F GHM

H
γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 H

γ=0|δ=0
0 H

δ=0|γ=0
0 H

γ=0|δ>0
0 H

δ=0|γ>0
0 Hγ=0,δ=0

0

5 9.28 13.00 0.94 0.60 0.16 0.62 0.16 0.64 0.74 0.76 0.64 0.78 0.88
10 10.12 12.46 1.04 0.78 0.18 0.66 0.18 0.68 0.90 0.82 0.94 0.82 1.10
20 11.00 12.50 1.18 1.24 0.44 0.82 0.48 0.84 1.08 1.18 1.06 1.16 1.62
50 12.46 12.00 0.90 1.12 0.60 0.50 0.62 0.50 0.92 0.88 0.86 0.82 1.16

125 12.98 11.72 1.32 1.34 0.80 0.44 0.80 0.48 1.06 1.04 1.16 1.06 1.46
250 12.92 9.72 1.06 1.18 0.88 0.40 0.88 0.42 1.02 1.02 1.00 1.02 1.34
500 13.24 8.74 1.04 1.06 1.00 0.18 1.08 0.18 1.12 1.14 1.16 0.88 1.24

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of
5,000 simulations.
The first column contains the number of firms (keeping N*T=2500).
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A.2 Simulation with non-normality of the disturbance

Table 14: Simulation with a firm cluster effect - non-normal disturbances

Shares Cl.FY Cl.F Cl.Y Rob PT.1a PT.1b PT.1c PT.1d PT.1e PT.1f PT.2a PT.2b PT.2c PT.2d PT.2e PT.2f PT.3a PT.3b PT.3c PT.3d PT.3e PT.3f
0-25 1.22 1.10 0.96 1.18 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
0-50 1.18 1.00 0.92 0.94 1.02 1.02 1.02 1.02 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0-75 1.76 0.86 1.00 1.00 0.88 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
25-25 0.64 1.22 4.02 4.10 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22
25-50 0.34 0.88 6.86 7.62 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
25-75 0.20 0.92 11.58 12.20 0.90 0.90 0.90 0.90 0.90 0.90 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
50-25 0.28 1.14 6.76 7.74 1.10 1.10 1.10 1.10 1.10 1.10 1.12 1.12 1.12 1.12 1.12 1.12 1.10 1.10 1.10 1.10 1.10 1.10
50-50 0.22 0.88 16.00 15.12 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
50-75 0.12 0.88 25.14 21.92 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
75-25 0.28 0.96 10.82 11.64 0.92 0.92 0.92 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.92 0.92 0.92 0.92 0.92
75-50 0.18 0.94 25.52 21.90 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
75-75 0.14 0.92 40.56 30.20 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to γi and µi respectively.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 15: Simulation with a time cluster effect - non-normal disturbances

Shares Cl.FY Cl.F Cl.Y Rob PT.1a PT.1b PT.1c PT.1d PT.1e PT.1f PT.2a PT.2b PT.2c PT.2d PT.2e PT.2f PT.3a PT.3b PT.3c PT.3d PT.3e PT.3f
0-25 1.40 0.80 1.10 0.96 1.08 1.08 1.08 1.08 1.10 1.10 1.08 1.08 1.08 1.08 1.08 1.08 1.10 1.10 1.10 1.10 1.10 1.10
0-50 1.12 1.12 0.96 1.20 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
0-75 1.14 1.08 0.80 1.12 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
25-25 0.70 38.08 0.72 37.98 0.76 0.76 0.76 0.76 0.74 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.74 0.74 0.74 0.74 0.76 0.76
25-50 0.74 59.26 0.74 58.76 0.72 0.72 0.72 0.72 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70
25-75 0.98 69.14 0.98 67.86 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
50-25 1.30 49.48 1.26 49.16 1.36 1.34 1.34 1.36 1.50 1.54 1.58 1.58 1.58 1.58 1.58 1.60 1.52 1.52 1.52 1.52 1.50 1.54
50-50 1.20 69.86 1.20 68.48 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20
50-75 1.94 80.44 1.94 77.96 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94
75-25 1.34 58.28 1.34 57.12 1.36 1.34 1.34 1.36 1.56 1.62 1.70 1.70 1.70 1.70 1.70 1.70 1.50 1.50 1.50 1.50 1.50 1.62
75-50 2.06 77.06 2.10 75.30 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10
75-75 3.00 86.16 2.98 83.08 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to γi and µi respectively.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 16: Simulation with firm and time effects - non-normal disturbances

N Cl.FY Cl.F Cl.Y Rob PT.1a PT.1b PT.1c PT.1d PT.1e PT.1f PT.2a PT.2b PT.2c PT.2d PT.2e PT.2f PT.3a PT.3b PT.3c PT.3d PT.3e PT.3f
5.00 2.64 8.48 39.92 53.50 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52

10.00 0.62 3.94 30.98 53.84 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
20.00 0.18 4.40 17.68 48.32 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
50.00 0.14 10.64 5.00 44.78 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

125.00 0.24 26.40 1.68 48.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
250.00 0.58 41.02 1.92 54.00 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
500.00 2.74 47.58 4.76 53.82 2.70 2.70 2.70 2.70 2.70 2.70 2.72 2.72 2.72 2.72 2.72 2.72 2.70 2.70 2.70 2.70 2.70 2.70

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
The first column contains the number of firms (keeping N*T=2500).
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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A.3 Simulation with non-normality of the exogenous regressor

Table 17: Simulation with a firm cluster effect - non-normal regressor

Shares Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
0-25 1.22 1.32 1.28 1.2 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32
0-50 1.54 1.16 1.3 1.24 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18
0-75 1.26 1.18 1.24 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18
25-25 0.66 1.38 3.14 4.22 1.34 1.34 1.34 1.34 1.34 1.34 1.38 1.38 1.38 1.38 1.38 1.38 1.36 1.36 1.36 1.36 1.36 1.36
25-50 0.38 1.16 5.34 6.56 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
25-75 0.3 1.16 8.14 9.78 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
50-25 0.42 1.26 6.14 7.44 1.24 1.24 1.24 1.24 1.24 1.24 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
50-50 0.38 1.22 13.24 13.64 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22
50-75 0.32 1.28 20.88 19.3 1.24 1.24 1.24 1.24 1.24 1.24 1.28 1.28 1.28 1.28 1.28 1.28 1.26 1.26 1.26 1.26 1.26 1.26
75-25 0.44 1.38 9.3 10.76 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38
75-50 0.52 1.44 22.54 20.68 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
75-75 0.38 1.52 36.86 28.68 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to γi and µi respectively.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 18: Simulation with a time cluster effect - non-normal regressor

Shares Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
0-25 1.3 1.14 1.1 1.24 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
0-50 1.3 1.12 1.06 1.14 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
0-75 1.04 1.1 0.86 1.24 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
25-25 1.32 44.12 1.28 43.98 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28
25-50 1.64 60.52 1.62 59.7 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
25-75 1.78 68.92 1.76 67.48 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76
50-25 3.3 61.56 3.3 60.82 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
50-50 3.5 73.56 3.5 71.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
50-75 3.38 81.2 3.38 79.16 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38
75-25 5.14 69 5.08 67.8 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08
75-50 4.88 82.2 4.88 79.8 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88
75-75 4.62 87.08 4.58 84.24 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the fraction of the variance in xit and εit that is due to γi and µi respectively.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 19: Simulation with firm and time effects - non-normal regressor

N Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
5 4.56 10.46 52.34 66.08 4.56 4.56 4.56 4.56 4.56 4.56 4.58 4.58 4.58 4.58 4.58 4.58 4.56 4.56 4.56 4.56 4.56 4.56
10 2.04 7.14 37.3 58.9 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
20 0.86 5.48 17.06 48.72 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
50 0.54 9.24 3.9 41.86 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
125 0.92 26.36 2.2 48.7 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
250 2.06 46.44 2.76 58.46 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06
500 4.5 59.56 5.32 65.18 4.5 4.5 4.5 4.5 4.5 4.5 4.54 4.54 4.54 4.54 4.54 4.54 4.5 4.5 4.5 4.5 4.5 4.5

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
The first column contains the number of firms (keeping N*T=2500).
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 20: Simulation without cluster effects - non-normal regressor

N Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
5 5.28 8.78 0.2 1.28 1.84 1.74 1.74 1.84 1.34 1.34 1.3 1.3 1.3 1.3 1.3 1.3 1.32 1.32 1.32 1.32 1.32 1.32
10 2.64 4.62 0.1 0.74 0.96 0.9 0.9 0.96 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
20 1.5 3.1 0.28 1.28 1.26 1.22 1.22 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
50 1 2.04 0.34 1.16 1.12 1.06 1.06 1.12 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
125 1.5 1.22 0.7 0.94 0.82 0.8 0.8 0.82 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
250 2.32 1.02 1.84 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
500 5.04 1.32 4.52 1.24 1.32 1.34 1.34 1.32 1.26 1.26 1.24 1.24 1.24 1.24 1.24 1.24 1.26 1.26 1.26 1.26 1.26 1.26

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
The first column contains the number of firms (keeping N*T=2500).
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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A.4 Simulation with temporary firm cluster effect

Table 21: Simulation with a temporary firm effect

Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
0/0,.5/.5 0.28 1.10 15.46 14.76 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
.9/.9,0/0 0.30 1.08 38.56 27.38 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04

.75/.75,.25/.25 0.22 1.12 23.28 20.18 1.04 1.04 1.04 1.04 1.04 1.04 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the values of φ and the share of the variance of εit and xit explained by the fixed firm component.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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Table 22: Simulation with a time effect and a temporary firm effect

Cl-FY Cl-F Cl-Y Rob PT-1a PT-1b PT-1c PT-1d PT-1e PT-1f PT-2a PT-2b PT-2c PT-2d PT-2e PT-2f PT-3a PT-3b PT-3c PT-3d PT-3e PT-3f
0/0,.5/.5 0.40 8.14 3.68 45.64 0.40 0.40 0.40 0.40 0.40 0.40 0.48 0.48 0.48 0.48 0.48 0.48 0.40 0.40 0.40 0.40 0.40 0.40

.9/.9,.5/.5 0.40 5.70 6.96 54.22 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
.75/.75,.5/.5 0.42 6.94 4.72 47.14 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Notes:
Cells denote the percentage of rejections of H0 : β = 1 at a nominal significance level (alpha) of 1% out of 5,000 simulations.
All the simulations are done with N=250 and T=10.
The first column contains the values of φ and the share of the variance of εit and xit explained by the fixed firm component.
All the simulations are done with N=50 and T=50.
Cl-FY uses standard errors clustered by firm and year.
Cl-F uses standard errors clustered by firm.
Cl-Y uses standard errors clustered by year.
Rob uses heteroskedascity-robust standard errors.
PT-1 refers to pre-test estimator using Lagrange Multiplier tests.
PT-2 refers to pre-test estimator using LR tests.
PT-3 refers to pre-test estimator using F tests.
a and b refers to the implementation according to Figure 1, c and d to Figure 2, and e and f to Figure 3.
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7 Applications in economics

7.1 Application 1

Gourio, Messer, and Siemer (2016) estimates impulse responses to entry shocks on an annual

panel of US states over the period 1982-2014 using local projections (see ?). We successfully

replicate the main table of the paper (see Table 23).12

Table 23: Effect of a shock to entry of firms four years later

1 2 3 4 5
GDP .23 (4.78) .21 (3.92) .16 (2.56) .3 (6.34) .12 (3.52)
TFP .09 (3.12) .09 (3.31) .05 (1.74) .21 (5.04) .06 (2.45)
Population .07 (3.77) .07 (3.26) .06 (2.52) .11 ( 4.6) –
NFP .06 (2.4) .07 (2.4) .04 (1.46) .09 (3.86) .01 (.68)
Number of Firms .2 (3.61) .18 (3.52) .17 (3.35) .28 (3.93) .09 (2.34)
Number of Firms age 1 .52 (5.33) .44 (4.52) .4 (3.29) .67 (6.23) .31 (4.6)
Number of exiting firms .33 (4.77) .31 (4.43 ) .19 (1.71) .51 (3.42) .23 (5.28)

Specification: yi,t+4 = αi + δt + γsit + x′i,tβ + εi,t
where yi,t+4 is the log of the outcome variable specified on the left of the table, αi is a state fixed effect, δt
is a time fixed effect, sit is the log change in the number of startups in state i between t-1 and t, and x′i,t a
vector of controls (which always includes yi,t, yi,t−1, and yi,t−2).
The table report estimates of γ for different outcome variables and different specifications: column 1 is
baseline with data over the period 1982-2014, column 2 sample without the Great Recession, column 3
including pre-1982 data, column 4 only lagged dependent variable as a control, and column 5 includes
future population growth as a control. Standard errors are two-way clustered and t-stats are reported in
parenthesis.

We compute confidence intervals for each coefficient reported in the baseline estimate of

Table 23 according to different assumptions regarding the disturbances.13 Figure 11 reports

the results. We find important variation across methods but in general with confidence

intervals computed using two-way clustering being wider than the competing approaches.

We conduct our pretest strategy using F tests with this data set according to the strategy

lined out in Figure 3 as option e) and find that it supports the approach taken by the authors

12The data is publicly available at https://www.openicpsr.org/openicpsr/project/113458/version/V1/view.
13We compute the confidence interval that allows for two-way clustering using the Stata command reghdfe,

which uses a finite-sample adjustment according to the smallest number of clusters (in this case, years) while
Gourio et al. (2016) uses cluster2 with different finite-sample adjustment, so our standard errors differ slightly.
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Figure 11: Confidence intervals for baseline estimates in Gourio et al. (2016)
Notes: (), (r), (i), (t), (i,t) denotes respectively standard errors computed assuming iid disturbances, using
heteroskedasticity robust s.e., clustering by state, clustering by year, and two-way clustering. The red line

marks the value of the estimated coefficient.

in the original paper, i.e. two-way clustering by state and year (See Table 24).

Table 24: Pretesting using F tests and option e)

F1 p-value F2 p-value Result
GDP 10.65 0.00 17.24 0.00 Two-way
TFP 9.05 0.00 9.66 0.00 Two-way
Population 33.66 0.00 15.31 0.00 Two-way
Non-farm employment 16.13 0.00 34.82 0.00 Two-way
Number of firms 15.86 0.00 27.13 0.00 Two-way
Number of firms age 1 17.79 0.00 53.21 0.00 Two-way
Number of exiting firms 31.20 0.00 25.18 0.00 Two-way

Notes: F1 corresponds to a F statistic for the null hypothesis that all state fixed effects are zero, the
associated p-values are reported next to them, and F2 corresponds to a F statistic for the null hypothesis
that all year fixed effects are zero, the associated p-values are reported next to them.
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7.2 Application 2

Acemoglu, Johnson, Robinson, and Yared (2008) study the relationship between income

per capita and democracy arguing that the strong cross-country correlation disappears after

controlling for factors that simultaneously affect both variables. We replicate a regression

provided as robustness to their main results, which has also been used in Kim and Wang

(2019), and Bonhomme and Manresa (2015) to illustrate novel econometric techniques.14

We estimate a fixed effects OLS regression with balanced panel data that uses 5-year

averaged data from 1970 to 2000 for 90 countries with the following simple econometric

specification:

dit = αdit−1 + γyit−1 + µt + δi + εit (38)

where dit is the democracy score of country i in period t, yit−1 the lagged value of log income

per capita, µt are time fixed effects, and δi country fixed effects.

Figure 12 reports the estimated γ together with confidence intervals computed with

different assumptions.

Table 25 reports our pretest approach using F tests, which favors two-way clustering of

the standard errors. This contrasts with clustering by country as done in the paper but the

results remain consistent in the sense that the coefficient is not statistically significant.

Table 25: Pretesting using F tests and option e)

F1 p-value F2 p-value Result
Statistics 10.27 0.00 2.32 0.00 Two-way

Notes: F1 corresponds to a F statistic for the null hypothesis that all country fixed effects are zero, the
associated p-values are reported next to them, and F2 corresponds to a F statistic for the null hypothesis

that all year fixed effects are zero, the associated p-values are reported next to them.

14The data is available online at http://qed.econ.queensu.ca/jae/2019-v34.6/kim-le/.
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Figure 12: Confidence intervals for estimates for lagged gdp
Notes: (), (r), (i), (t), (i,t) denotes respectively standard errors computed assuming iid disturbances, using
heteroskedasticity robust s.e., clustering by state, clustering by year, and two-way clustering. The red line

marks the value of the estimated coefficient.

7.3 Application 3

We use the data set from the Ph.D. dissertation of Y. Grunfeld (Univ. of Chicago, 1958),

which has been used to illustrate the empirical use of panel data methods among others

by Stata user manual, Greene (2012), and Baltagi (2013).15 We estimate the following

specification:

yit = α + β1vit + β2kit + εit (39)

where yit corresponds to investment by firm i in year t, vit the real value of the firm, kit

the real value of firm’s capital stock. The data set spans 10 firms and 20 years. Figure 13

reports the confidence intervals constructed according to different methods.

15Data available at http://www.stata-press.com/data/r13/grunfeld.
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We run our pretest strategy using F tests with this data set according to the strategy

lined out in Figure 3 as option e) and find that it supports standard errors clustered by firm

(See Table 26).
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Figure 13: Confidence intervals for estimates in Grunfeld data set
Notes: (), (r), (i), (t), (i,t) denotes respectively standard errors computed assuming iid disturbances, using
heteroskedasticity robust s.e., clustering by state, clustering by year, and two-way clustering. The red line

marks the value of the estimated coefficient.

Table 26: Pretesting using F tests and option e)

F1 p-value F2 p-value Result
Statistics 1.40 0.13 52.36 0.00 Cluster by firm

Notes: F1 corresponds to a F statistic for the null hypothesis that all firm fixed effects are zero, the
associated p-values are reported next to them, and F2 corresponds to a F statistic for the null hypothesis
that all year fixed effects are zero, the associated p-values are reported next to them.
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7.4 Application 4

Our paper have focused on the use of panel data, however we may also have to decide how

to computer standard errors in the context of cross-sectional data.16 Here we ilustrate the

use of our pretest approach with the F test on a cross section. We use a data set that comes

from a women sample of the National Longitudinal Survey, which has been used to illustrate

econometrics methods for example in Roodman, MacKinnon, Nielsen, and Webb (2019). We

estimate the following specification:

yi = α + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + εi (40)

where yi corresponds to wage, x1i number of hours worked, x2i total work experience, x3i a

dummy variable about black race , x4i is a dummy variable indicating graduate status, and

finally x5i a dummy variable indicating whether lives in South. We pretest the model to

decide how to cluster using industry and occupation.

Figure 14 reports the confidence intervals for the coefficients associated with these five

regressors. Table 27 reports our pretest strategy, which favors two-way clustering by industry

and occupation.

Table 27: Pretesting using F tests and option e)

F1 p-value F2 p-value Result
Statistics 12.47 0.00 8.67 0.00 Two-way

16Data available at http://www.stata-press.com/data/r8/nlsw88.dta.
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Figure 14: Confidence intervals for estimates in nlsw88 data set
Notes: (), (r), (i), (t), (i,t) denotes respectively standard errors computed assuming iid disturbances, using
heteroskedasticity robust s.e., clustering by state, clustering by year, and two-way clustering. The red line

marks the value of the estimated coefficient.
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